Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Profiling condition-specific, genome-wide regulation of mRNA stability in yeast.

Identifieur interne : 001830 ( Main/Exploration ); précédent : 001829; suivant : 001831

Profiling condition-specific, genome-wide regulation of mRNA stability in yeast.

Auteurs : Barrett C. Foat [États-Unis] ; S Sean Houshmandi ; Wendy M. Olivas ; Harmen J. Bussemaker

Source :

RBID : pubmed:16317069

Descripteurs français

English descriptors

Abstract

The steady-state abundance of an mRNA is determined by the balance between transcription and decay. Although regulation of transcription has been well studied both experimentally and computationally, regulation of transcript stability has received little attention. We developed an algorithm, MatrixREDUCE, that discovers the position-specific affinity matrices for unknown RNA-binding factors and infers their condition-specific activities, using only genomic sequence data and steady-state mRNA expression data as input. We identified and computationally characterized the binding sites for six mRNA stability regulators in Saccharomyces cerevisiae, which include two members of the Pumilio-homology domain (Puf) family of RNA-binding proteins, Puf3p and Puf4p. We provide computational and experimental evidence that regulation of mRNA stability by these factors is modulated in response to a variety of environmental stimuli.

DOI: 10.1073/pnas.0503803102
PubMed: 16317069
PubMed Central: PMC1295595


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Profiling condition-specific, genome-wide regulation of mRNA stability in yeast.</title>
<author>
<name sortKey="Foat, Barrett C" sort="Foat, Barrett C" uniqKey="Foat B" first="Barrett C" last="Foat">Barrett C. Foat</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, Columbia University, New York, NY 10027, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Columbia University, New York, NY 10027</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">New York</settlement>
</placeName>
<orgName type="university">Université Columbia</orgName>
</affiliation>
</author>
<author>
<name sortKey="Houshmandi, S Sean" sort="Houshmandi, S Sean" uniqKey="Houshmandi S" first="S Sean" last="Houshmandi">S Sean Houshmandi</name>
</author>
<author>
<name sortKey="Olivas, Wendy M" sort="Olivas, Wendy M" uniqKey="Olivas W" first="Wendy M" last="Olivas">Wendy M. Olivas</name>
</author>
<author>
<name sortKey="Bussemaker, Harmen J" sort="Bussemaker, Harmen J" uniqKey="Bussemaker H" first="Harmen J" last="Bussemaker">Harmen J. Bussemaker</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16317069</idno>
<idno type="pmid">16317069</idno>
<idno type="doi">10.1073/pnas.0503803102</idno>
<idno type="pmc">PMC1295595</idno>
<idno type="wicri:Area/Main/Corpus">001808</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001808</idno>
<idno type="wicri:Area/Main/Curation">001808</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001808</idno>
<idno type="wicri:Area/Main/Exploration">001808</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Profiling condition-specific, genome-wide regulation of mRNA stability in yeast.</title>
<author>
<name sortKey="Foat, Barrett C" sort="Foat, Barrett C" uniqKey="Foat B" first="Barrett C" last="Foat">Barrett C. Foat</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, Columbia University, New York, NY 10027, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Columbia University, New York, NY 10027</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">New York</settlement>
</placeName>
<orgName type="university">Université Columbia</orgName>
</affiliation>
</author>
<author>
<name sortKey="Houshmandi, S Sean" sort="Houshmandi, S Sean" uniqKey="Houshmandi S" first="S Sean" last="Houshmandi">S Sean Houshmandi</name>
</author>
<author>
<name sortKey="Olivas, Wendy M" sort="Olivas, Wendy M" uniqKey="Olivas W" first="Wendy M" last="Olivas">Wendy M. Olivas</name>
</author>
<author>
<name sortKey="Bussemaker, Harmen J" sort="Bussemaker, Harmen J" uniqKey="Bussemaker H" first="Harmen J" last="Bussemaker">Harmen J. Bussemaker</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Fungal (genetics)</term>
<term>Genome, Fungal (genetics)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Protein Folding (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (MeSH)</term>
<term>RNA Stability (genetics)</term>
<term>RNA Stability (physiology)</term>
<term>RNA-Binding Proteins (genetics)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Génome fongique (génétique)</term>
<term>Pliage des protéines (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de liaison à l'ARN (génétique)</term>
<term>Régulation de l'expression des gènes fongiques (génétique)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Stabilité de l'ARN (génétique)</term>
<term>Stabilité de l'ARN (physiologie)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA-Binding Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Protein-Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Genome, Fungal</term>
<term>RNA Stability</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Génome fongique</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison à l'ARN</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Saccharomyces cerevisiae</term>
<term>Stabilité de l'ARN</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Stabilité de l'ARN</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>RNA Stability</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Protein Folding</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Pliage des protéines</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The steady-state abundance of an mRNA is determined by the balance between transcription and decay. Although regulation of transcription has been well studied both experimentally and computationally, regulation of transcript stability has received little attention. We developed an algorithm, MatrixREDUCE, that discovers the position-specific affinity matrices for unknown RNA-binding factors and infers their condition-specific activities, using only genomic sequence data and steady-state mRNA expression data as input. We identified and computationally characterized the binding sites for six mRNA stability regulators in Saccharomyces cerevisiae, which include two members of the Pumilio-homology domain (Puf) family of RNA-binding proteins, Puf3p and Puf4p. We provide computational and experimental evidence that regulation of mRNA stability by these factors is modulated in response to a variety of environmental stimuli.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16317069</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>01</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>102</Volume>
<Issue>49</Issue>
<PubDate>
<Year>2005</Year>
<Month>Dec</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Profiling condition-specific, genome-wide regulation of mRNA stability in yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>17675-80</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The steady-state abundance of an mRNA is determined by the balance between transcription and decay. Although regulation of transcription has been well studied both experimentally and computationally, regulation of transcript stability has received little attention. We developed an algorithm, MatrixREDUCE, that discovers the position-specific affinity matrices for unknown RNA-binding factors and infers their condition-specific activities, using only genomic sequence data and steady-state mRNA expression data as input. We identified and computationally characterized the binding sites for six mRNA stability regulators in Saccharomyces cerevisiae, which include two members of the Pumilio-homology domain (Puf) family of RNA-binding proteins, Puf3p and Puf4p. We provide computational and experimental evidence that regulation of mRNA stability by these factors is modulated in response to a variety of environmental stimuli.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Foat</LastName>
<ForeName>Barrett C</ForeName>
<Initials>BC</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Columbia University, New York, NY 10027, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Houshmandi</LastName>
<ForeName>S Sean</ForeName>
<Initials>SS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Olivas</LastName>
<ForeName>Wendy M</ForeName>
<Initials>WM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bussemaker</LastName>
<ForeName>Harmen J</ForeName>
<Initials>HJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HG003008</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HG003008</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>LM007276</GrantID>
<Acronym>LM</Acronym>
<Agency>NLM NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM008798</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P20 LM007276</GrantID>
<Acronym>LM</Acronym>
<Agency>NLM NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM063759</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM008798</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM63759</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>11</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C070592">PUF4 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016601">RNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C500749">target of rapamycin protein, S cerevisiae</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="N">Genome, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="N">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020871" MajorTopicYN="N">RNA Stability</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016601" MajorTopicYN="N">RNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16317069</ArticleId>
<ArticleId IdType="pii">0503803102</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0503803102</ArticleId>
<ArticleId IdType="pmc">PMC1295595</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11513-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2002 Mar;18(3):150-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11858839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Feb;13(2):216-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Apr;23(8):2623-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12665566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 15;423(6937):241-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2003 Jun;34(2):166-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12740579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Aug;13(8):1863-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12902380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D258-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2004 Mar;2(3):E79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15024427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5860-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11972065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:329-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Jun;9(6):1161-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12086614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9697-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Mar 18;5:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15113405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Jun;24(12):5534-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15169913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Jul 23;15(2):303-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15260981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2004 Oct;10(10):1625-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15337848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1989 Aug;9(8):3260-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2477683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1990 May;10(5):2269-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2183028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1993 Aug;7(8):1632-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8393418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Sep;13(9):5141-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8355674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Feb;10(2):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8203157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1995 Oct 1;9(19):2421-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7557393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Oct 24;278(5338):680-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9381177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Nov 25;95(5):717-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9845373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Nov 22;20(17):3246-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15180930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Dec;15(12):5659-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15371544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Dec 1;18(23):2845-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15574591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Apr 25;1491(1-3):37-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10760568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 Apr;5(4):729-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10882108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Dec 1;19(23):6602-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11101532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2000 Dec 14-28;10(24):1574-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11137008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Feb;12(2):323-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11179418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Feb;27(2):167-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11175784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2001 Oct 3;276(1-2):73-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11591473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2001;2(10):RESEARCH0041</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11597333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Nov;12(11):3428-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11694578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1461-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11830665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Dec 15;30(24):5529-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12490721</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
<settlement>
<li>New York</li>
</settlement>
<orgName>
<li>Université Columbia</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bussemaker, Harmen J" sort="Bussemaker, Harmen J" uniqKey="Bussemaker H" first="Harmen J" last="Bussemaker">Harmen J. Bussemaker</name>
<name sortKey="Houshmandi, S Sean" sort="Houshmandi, S Sean" uniqKey="Houshmandi S" first="S Sean" last="Houshmandi">S Sean Houshmandi</name>
<name sortKey="Olivas, Wendy M" sort="Olivas, Wendy M" uniqKey="Olivas W" first="Wendy M" last="Olivas">Wendy M. Olivas</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Foat, Barrett C" sort="Foat, Barrett C" uniqKey="Foat B" first="Barrett C" last="Foat">Barrett C. Foat</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001830 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001830 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16317069
   |texte=   Profiling condition-specific, genome-wide regulation of mRNA stability in yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16317069" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020